If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2+156x-144=0
a = 30; b = 156; c = -144;
Δ = b2-4ac
Δ = 1562-4·30·(-144)
Δ = 41616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{41616}=204$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(156)-204}{2*30}=\frac{-360}{60} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(156)+204}{2*30}=\frac{48}{60} =4/5 $
| 20d2+26d+8=0 | | 4(-6x-9)=-180 | | 5(4x-7)=-35 | | 51-33=n+4 | | 4x-9÷5.2x+15=1 | | 4(-3+5x)=128 | | 51-33=n | | 3+x=6x+53 | | t-13=4+53 | | 7(6x+1)=-413 | | 175=7(-7-4x) | | r+6=13+14 | | 16+10=9-28a | | x+645=-3 | | 16+10=9X28a | | 2-(4-1x)=10 | | X/2+4=9-x/2 | | ½d+12=15 | | x·4-3=x·3-4 | | 8-(3x+27)=14x | | 9x−3=69 | | 7-1=2y-7 | | 2b+(b-7)=44 | | 5x(2+1=50) | | f(5)=2×-1 | | 1/2x-1=1/2 | | 0.72c/4=(3c)*0.24*1+594 | | 7(4+5x)=-77 | | 0.72c/4=(3c/4)*0.24*1+594 | | 9=-7+4x+21-8x | | 21=x/4+3 | | 2u/3=24 |